In situ X-ray nanotomography of metal surfaces during electropolishing

نویسندگان

  • Maryana I. Nave
  • Jason P. Allen
  • Yu-chen Karen Chen-Wiegart
  • Jun Wang
  • Surya R. Kalidindi
  • Konstantin G. Kornev
چکیده

A low voltage electropolishing of metal wires is attractive for nanotechnology because it provides centimeter long and micrometer thick probes with the tip radius of tens of nanometers. Using X-ray nanotomography we studied morphological transformations of the surface of tungsten wires in a specially designed electrochemical cell where the wire is vertically submersed into the KOH electrolyte. It is shown that stability and uniformity of the probe span is supported by a porous shell growing at the surface of tungsten oxide and shielding the wire surface from flowing electrolyte. It is discovered that the kinetics of shell growth at the triple line, where meniscus meets the wire, is very different from that of the bulk of electrolyte. Many metals follow similar electrochemical transformations hence the discovered morphological transformations of metal surfaces are expected to play significant role in many natural and technological applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precipitation and surface adsorption of metal complexes during electropolishing. Theory and characterization with X-ray nanotomography and surface tension isotherms.

Electropolishing of metals often leads to supersaturation conditions resulting in precipitation of complex compounds. The solubility diagrams and Gibbs adsorption isotherms of the electropolishing products are thus very important to understand the thermodynamic mechanism of precipitation of reaction products. Electropolishing of tungsten wires in aqueous solutions of potassium hydroxide is used...

متن کامل

Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography.

Metal accumulation at the catalyst particle surface plays a role in particle agglutination during fluid catalytic cracking.

متن کامل

Focused ion beam preparation of samples for X-ray nanotomography.

The preparation of hard material samples with the necessary size and shape is critical to successful material analysis. X-ray nanotomography requires that samples are sufficiently thin for X-rays to pass through the sample during rotation for tomography. One method for producing samples that fit the criteria for X-ray nanotomography is focused ion beam/scanning electron microscopy (FIB/SEM) whi...

متن کامل

Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography

Materials degradation-the main limiting factor for widespread application of alloy anodes in battery systems-was assumed to be worse in sodium alloys than in lithium analogues due to the larger sodium-ion radius. Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation. Here we track three-dimensional structural and chemical evolution of tin...

متن کامل

Current and ultimate limitations of scanning x-ray nanotomography

X-ray nanotomography has developed into a powerful new tool for three-dimensional structural analysis. The scanning approach offers capabilities that are competitive with full-field imaging. Current and ultimate limitations of nanotomography are examined in light of recent work.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015